Introduction to Descriptive Statistics

17.871

Types of Variables

Describing data

	Moment	Non-mean based measure
Center	Mean	Mode, median
Spread	Variance (standard deviation)	Range, Interquartile range
Skew	Skewness	--
Peaked	Kurtosis	--

Population vs. Sample Notation

Population	Vs	Sample
Greeks		Romans
μ, σ, β		s, b

Mean

n

Variance, Standard Deviation

$$
\begin{gathered}
\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{n} \equiv \sigma^{2}, \\
\sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{n}} \equiv \sigma
\end{gathered}
$$

Variance, S.D. of a Sample

Degrees of freedom

$$
\sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{n-1}} \equiv S
$$

Binary data

$$
\begin{aligned}
& \bar{X}=\operatorname{prob}(X)=1=\text { proportion of time } x=1 \\
& s_{x}^{2}=\bar{x}(1-\bar{x}) \Rightarrow s_{x}=\sqrt{\bar{x}(1-\bar{x})}
\end{aligned}
$$

Normal distribution example

- IQ

■ SAT

- Height

■ "No skew"
■"Zero skew"

- Symmetrical
- Mean $=$ median $=$ mode

Skewness

Asymmetrical distribution

- GPA of MIT students
- "Negative skew"
- "Left skew"

Skewness

 (Asymmetrical distribution)

- Income
- Contribution to candidates
- Populations of countries
■ "Residual vote" rates

■ "Positive skew"
■ "Right skew"

Skewness

Frequency

Kurtosis

$$
k>3 \quad \text { leptokurtic }
$$

Normal distribution

- Skewness = 0
- Kurtosis = 3

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu) / 2 \sigma^{2}}
$$

The z-score

 or the"standardized score"

More words about the normal curve

Commands in STATA for

 getting univariate statistics■ summarize varname

- summarize varname, detail

■ histogram varname, bin() start() width() density/fraction/frequency normal

- graph box varnames

■ tabulate [NB: compare to table]

Example of Sophomore Test Scores

- High School and Beyond, 1980: A Longitudinal Survey of Students in the United States (ICPSR Study 7896)
- totalscore = \% of questions answered correctly minus penalty for guessing
- recodedtype $=$ ($1=$ public school, 2=religious private, 3 = non-sectarian private)

Explore totalscore some more

. table recodedtype, c(mean totalscore)

```
recodedty |
pe I mean(totals~e)
----------+---------------
    | . 4475548
    | . }58988
```


Graph totalscore

. hist totalscore

Divide into "bins" so that each bar represents 1\% correct

- hist totalscore, width(.01)
- (bin=124, start=-. 24209334, width=.01)

Add ticks at each 10\% mark

histogram totalscore, width(.01) xlabel(-.2 (.1) 1) (bin=124, start=-.24209334, width=.01)

Superimpose the normal curve (with the same mean and s.d. as the empirical distribution)

. histogram totalscore, width(.01) xlabel(-.2 (.1) 1) normal
(bin=124, start=-.24209334, width=.01)

Histograms by category

.histogram totalscore, width(.01) xlabel(-.2 (.1)1)
by (recodedtype)
(bin=124, start=-.24209334, width=.01)

Main issues with histograms

- Proper level of aggregation
- Non-regular data categories

A note about histograms with unnatural categories

From the Current Population Survey (2000), Voter and Registration Survey
How long (have you/has name) lived at this address?
-9 No Response
-3 Refused
-2 Don't know
-1 Not in universe
1 Less than 1 month
2 1-6 months
3 7-11 months
4 1-2 years
5 3-4 years
65 years or longer

Solution, Step 1

 Map artificial category onto "natural" midpoint-9 No Response \rightarrow missing
-3 Refused \rightarrow missing
-2 Don't know \rightarrow missing
-1 Not in universe \rightarrow missing
1 Less than 1 month $\rightarrow 1 / 24=0.042$
2 1-6 months $\rightarrow 3.5 / 12=0.29$
3 7-11 months $\rightarrow 9 / 12=0.75$
$4 \quad 1-2$ years $\rightarrow 1.5$
5 3-4 years $\rightarrow 3.5$
65 years or longer $\rightarrow 10$ (arbitrary)

Graph of recoded data

histogram longevity, fraction

Density plot of data

Density plot template

Category	Fraction	X-min	X-max	X-length	Height (density)
$<1 \mathrm{mo}$.	.0156	0	$1 / 12$.082	$.19^{*}$
1-6 mo.	.0909	$1 / 12$	$1 / 2$.417	.22
$7-11 \mathrm{mo}$.	.0430	$1 / 2$	1	.500	.09
$1-2 \mathrm{yr}$.	.1529	1	2	1	.15
3-4 yr.	.1404	2	4	2	.07
$5+\mathrm{yr}$.	.5571	4	15	11	.05

* = .0156/.082

Draw the previous graph with a box plot

- graph box totalscore

Draw the box plots for the different types of schools

. graph box totalscore,by(recodedtype)

Draw the box plots for the different types of schools using "over" option

graph box totalscore,over(recodedtype)

Three words about pie charts: don't use them

So, what's wrong with them

- For non-time series data, hard to get a comparison among groups; the eye is very bad in judging relative size of circle slices
- For time series, data, hard to grasp crosstime comparisons

Some Words about Graphical Presentation

- Aspects of graphical integrity (following Edward Tufte, Visual Display of Quantitative Information)
\square Represent number in direct proportion to numerical quantities presented
\square Write clear labels on the graph
\square Show data variation, not design variation
\square Deflate and standardize money in time series

